Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.22.558930

ABSTRACT

Continued high levels spread of SARS-CoV-2 globally enabled accumulation of changes within the Spike glycoprotein, leading to resistance to neutralising antibodies and concomitant changes to entry requirements that increased viral transmission fitness. Herein, we demonstrate a significant change in ACE2 and TMPRSS2 use by primary SARS-CoV-2 isolates that occurred upon arrival of Omicron lineages. Mechanistically we show this shift to be a function of two distinct ACE2 pools based on cleavage or non-cleavage of ACE2 by TMPRSS2 activity. In engineered cells overexpressing ACE2 and TMPRSS2, ACE2 was cleaved by TMPRSS2 and this led to either augmentation or progressive attenuation of pre-Omicron and Omicron lineages, respectfully. In contrast, TMPRSS2 resistant ACE2 restored infectivity across all Omicron lineages through enabling ACE2 binding that facilitated TMPRSS2 spike activation. Therefore, our data support the tropism shift of Omicron lineages to be a function of evolution towards the use of uncleaved pools of ACE2 with the latter consistent with its role as a chaperone for many tissue specific amino acid transport proteins.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.06.22283000

ABSTRACT

The Omicron era of the COVID-19 pandemic commenced at the beginning of 2022 and whilst it started with primarily BA.1, it was latter dominated by BA.2 and related sub-lineages. Over the course of 2022, we monitored the potency and breadth of antibody neutralization responses to many emerging variants at two levels: (i) we tracked over 400,000 U.S. plasma donors over time through various vaccine booster roll outs and Omicron waves using antibody pools. (ii) we mapped the antibody response at the individual level using blood from strigently curated vaccine and convalescent cohorts. In pooled antibody samples, we observed the maturation of neutralization breadth to Omicron variants over time through continuing vaccine and infection waves. Importantly, in many cases we observed increased antibody breadth to variants that were yet to be in circulation. Resolution of viral neutralisation at the cohort level supported equivalent coverage across prior and emerging variants with emerging isolates BQ.1.1, XBB.1 and BR.2.1 the most evasive. Further, these emerging variants were resistant to Evusheld, whilst neutralization resistance to Sotrovimab was restricted to BQ.1.1 and further supported by lack of Spike glycoprotein binding to this variant. An outgrowth advantage through better utilization of TMPRSS2 was observed across BQ lineages and not those derived from BA.2.75. We conclude at this current point in time that variants derived from BQ lineages can evade antibodies at levels equivalent to their most evasive BA.2.75 counterparts but sustain an entry phenotype that would promote an additional outgrowth advantage.


Subject(s)
COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2262275.v1

ABSTRACT

A more efficient and effective adaptive humoral immune response has been proposed as the basis of the usually favourable outcome of paediatric COVID-19. The breadth of virus and vaccine immunogenicity towards the ever-mutating Spike protein amongst variants of concern (VOC) have not yet been compared between children and adults. We utilized molecular cloning and sensitive antibody detection against conformational Spike by flow cytometry to assess Spike antibodies and delineate the immunogenic region in immune naïve children and adults vaccinated by BNT162b2 and ChAdOx1, and naturally infected with Early Clade, Delta, and Omicron variants. Patient sera were analysed against SARS-CoV-2 Spike antigens including naturally occurring VOCs Alpha, Beta, Gamma, Delta, Omicron BA.1, BA.2, and BA.5 variants of interest Epsilon, Kappa, Eta, D.2, and artificial Spike mutants. There was no notable difference between breadth and longevity of antibody responses generated against VOCs in children and adults. Vaccinated individuals displayed similar immunoreactivity profiles across variants to naturally infected individuals. Delta-infected patients had an enhanced immunogenicity toward Delta and some VOCs compared to patients infected by Early Clade SARS-CoV-2. Although Omicron BA.1, BA.2, and BA.5 antibody levels were increased after Omicron infection in both children and adults, immunogenicity against Omicron subvariants was reduced. This decrease was observed across VOC infection, immunization, and age groups. Selected epistatically combined mutations led to an increase of immunogenicity in artificial Spikes, but were unable to compensate overall within Omicron. Our results reveal important molecular features central to the generation of high antibody titers and broad immunoreactivity that should be considered in future vaccine design and global serosurveillance.


Subject(s)
Migraine Disorders , Hepatitis D , COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.22.22277947

ABSTRACT

Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, rather than the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, that were absent in individuals with low antibody levels. However, vaccination in low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.


Subject(s)
COVID-19 , Disease
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.30.478400

ABSTRACT

Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naive T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. More naive interferon-activated CD4+ T cells were recruited into the memory compartment and recovery was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.


Subject(s)
COVID-19 , Coronavirus Infections , Drug-Related Side Effects and Adverse Reactions
7.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1207364.v1

ABSTRACT

Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. Over this time global vaccine programs have been introduced, contributing to lowered COVID-19 hospitalisation and mortality rates, particularly in the first world. In late 2021, the Omicron (B.1.1.529) virus variant emerged, with significant genetic differences and clinical effects from other variants of concern (VOC). This variant a demonstrated higher number of polymorphisms in the gene encoding the Spike (S) protein, and there has been displacement of the dominant Delta variant. We assessed the impact of Omicron infection on the ability of: serum from vaccinated and/or previously infected individuals; concentrated human IgG from plasma donors, and licensed monoclonal antibody therapies to neutralise the virus in vitro . There was a 17 to 27-fold reduction in neutralisation titres across all donors who had a detectable neutralising antibody titre to the Omicron variant. Concentrated pooled human IgG from convalescent and vaccinated donors had greater breadth of neutralisation, although the potency was still reduced 16-fold. Of all therapeutic antibodies tested, significant neutralisation of the Omicron variant was only observed for Sotrovimab, with other monoclonal antibodies unable to neutralise Omicron in vitro . These results have implications for ongoing therapy of individuals infected with the Omicron variant.


Subject(s)
Coronavirus Infections , COVID-19
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.19.20248567

ABSTRACT

The SARS-CoV-2 antibody neutralization response and its evasion by emerging viral variants are unknown. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 RT-PCR-confirmed COVID-19 individuals with detailed demographics and followed up to seven months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization were associated with COVID-19 severity. A subgroup of high responders maintained high neutralizing responses over time, representing ideal convalescent plasma therapy donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal plasma donors and vaccine monitoring and design.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
10.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-92527.v1

ABSTRACT

Considerable concerns relating to the duration of protective immunity against SARS-CoV-2 have been raised, with evidence of antibody titres declining rapidly after infection and reports of reinfection. Here we monitored antibody responses against SARS-CoV-2 receptor binding domain (RBD) for up to six months after infection. While antibody titres were maintained, half of the cohort’s neutralising responses had returned to background. However, encouragingly in a selected subset of 13 participants, 12 had detectable RBD-specific memory B cells and these generally increased out to 6 months. Furthermore, we were able to generate monoclonal antibodies with SARS-CoV-2 neutralising capacity from these memory B cells. Overall our study suggests that the loss of neutralising antibodies in plasma may be countered by the maintenance of neutralising capacity in the memory B cell repertoire.

SELECTION OF CITATIONS
SEARCH DETAIL